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This note accompanies the reports Extreme Heat: The economic and social consequences for the
United States and Hot cities, chilled economies: Impacts of extreme heat on global cities, which
were prepared for the Adrienne Arsht-Rockefeller Foundation Resilience Center at the Atlantic
Council. It provides an overview of the approach taken to quantify the gendered differences in
heat-related labor productivity losses and mortality impacts, including a description of data
sources and key assumptions.

Introduction

In brief, our approach can be summarized in the following steps:

We use best-in-class climate models to analyze heat conditions under current climate conditions
and those expected in 2030 and 2050.

1. We compile data on socioeconomic variables – including work hours, economic
output, and population demographics – and project these forward to 2030 and 2050.

2. We estimate the impact of heat on labor productivity losses in paid and unpaid work,
under current and future climate conditions.

3. We analyze the impacts of heat-related labor productivity loss on sectoral economic
output.

4. We estimate excess heat wave deaths under current and future climate conditions.
Figure 1 below summarizes the key variables in the analysis.

Figure 1: High level overview of approach for analysis in India, Nigeria, and the United States
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Climate modeling

We analyze heat conditions under current and future climatic conditions using downscaled
projections from the CMIP ensemble of climate models. This work uses output from the latest
generation of Global Climate and Earth System models of the Climate Model Intercomparison
Project 6 (CMIP6), which were used in the most recent IPCC AR6 report. Specifically, we use the
output from four of the models that contain all the necessary variables for our heat calculations:
CanESM5, EC-Earth3, MPI-ESM1-2-LR and MRI-ESM2-0 (Yukimoto et al., 2019; Swart et al, 2019;
Mauritsen et al., 2019; Döscher et al., 2019). Since these models are employed at horizontal grid
sizes of 100-250 km, they do not provide the granularity required in this work. To remedy this, we
use a statistical downscaling technique (Abatzoglou and Brown, 2012) that generates climate
output at a 9 km resolution across the globe, including the three countries of focus (The United
States, India, and Nigeria). Along with providing enhanced granularity, this method also uses
historical observations to correct any biases that are intrinsic to the climate models. We use two
modelled outcomes of interest for this analysis:

1. Simple Wet Bulb Globe Temperature (sWBGT) – which we use to analyze the impact of
heat on labor productivity.

2. Number of heat wave days (where a heat wave day is defined based on the local
temperature profile) – which we use to analyze the impact of heat wave exposure on
mortality.

These output variables are upscaled to the relevant geographic unit of analysis for use in the
socioeconomic models.

Wet Bulb Globe Temperature (WBGT) is a measure of temperature which closely relates to
human heat stress.WBGT accounts for an array of co-occurring factors that mediate the impact
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of temperatures on the human body including humidity, wind speed, and visible and infrared
radiation. We use a simplified version of WBGT (Stull et al, 2011), referred to as sWBGT, which
ignores the effect of wind on heat stress, and uses daily mean temperature, daily mean relative
humidity and daily maximum temperature. The use of sWBGT as a measure of heat stress among
workers is well accepted and widespread in the literature (e.g., ILO, 2019, Arsht-Rock, 2022,
Parsons et al., 2021). In this analysis, the functional relationship between sWBGT and effective
labor hours is used to determine losses in effective labor from higher temperatures (explained in
Section 3).

Heat wave days are projected and used as a key input to determine mortality impacts of
extreme heat and are defined in relative terms for a particular geography.We advance
previous work (Arsht-Rock, 2022) by using Guo et al.’s (2018) definition of heat waves. For each
year and climate model in the three periods (2023, 2030, and 2050), we calculate total heat
wave days as the yearly sum of at least two consecutive days with daily mean temperature

exceeding the 95th percentile. Across all three time periods, the 95th percentile is defined

according to current climate conditions.

We adopt a warming level framework rather than selecting specific time horizons and
scenarios. This approach involves selecting periods corresponding to different levels of global
temperature increase relative to the pre-industrial era (1850-1900). Utilizing this framework allows
us to aggregate output of several climate models and ensures that our analysis remains
independent of the choice of future scenario. We apply three warming levels in our analysis using
the SSP3 scenario: a baseline period (indicative of the present-day climate, 1.1 °C warming), a 1.5°C
warming level (indicative of climate conditions in 2030), and a 2°C warming level (2050).

In addition to human-induced global warming, climate is also governed by natural year-to-year
variability in temperature and precipitation. These variations can explain stark differences in
heat waves and heat stress between individual years, but they have not been taken into account
in previous studies.
For each warming level, each of the four climate models produces twenty simulated years of
data– meaning that there are eighty model-years for each climate period. In this work, we use the
statistical distribution provided by the climate model data to calculate the heat wave and heat
stress conditions in an ‘average’ year (mean) and an ‘extreme’ year (a 1-in-40 probability of
occurrence).

Baseline and projected socioeconomic data

Another set of critical model inputs is underlying data on population, employment, health, and
economic activity, both today and projected into the future. In all projections, we looked for
consistency with the Shared Socioeconomic Pathways Scenario 3: “Regional Rivalry” (which is
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also consistent with the climate analysis described above). We estimated socioeconomic
variables at the most disaggregated geographical unit for which we could collect data – in India
this was at the district level (where there are 766 districts), in Nigeria at the state level (36 states)

and in the US the county level (3,143 counties).1 The critical variables in our analysis include:

● Population by age and gender.We categorize the population into three age groups: child
(0-14), working age (15-64) and elderly (65+). We use World Population Prospects data for
current population data, projecting it forward using Briggs (2021) under the United
Nation’s (UN) medium-to-high fertility scenario.

● Crude death rates by age, gender and socioeconomic status. This is a national-level
variable, taking the number of deaths from the UN World Population Prospects and
dividing it by the expected population. The crude death rates are adjusted for different
socioeconomic groups using academic literature on inequalities in mortality rates.

● Working hours by sector, gender and occupation. In the United States, this information is
extracted from the Census Bureau. In India and Nigeria, national-level working hours by
sector, gender and occupation is estimated using data from the International Labor
Organization (ILO). This information is downscaled to the local level using a combination
of national statistics on local employment and Gross Domestic Product (GDP), and spatial
data on the working age population. Working hours in all sectors are expected to increase
in line with the working age population.

● Working hours in unpaid work, by gender. This data is taken from national time use
surveys. We assume that all working age men and women conduct the national
gender-specific average of unpaid work. Hours in unpaid work is expected to increase in
line with the working age population.

● Gross domestic product by sector. This data is taken from national data sources (the
Reserve Bank of India, the National Bureau of Statistics in Nigeria, and the Bureau of
Economic Accounts in the US). In instances where state-level GDP data in Nigeria was
incomplete, missing values were imputed, assuming that the GDP/capita for missing
states was in line with the regional average. To project the GDP for all sectors we utilized
Wang & Sun (2022), employing the SSP3 scenario.

● Domestic rates of air conditioning prevalence, by socioeconomic status. This data is
estimated using national household level surveys. The prevalence of air conditioning is
assumed to remain constant over time – i.e., the forward-looking results are with “no
adaptation”, assuming that people do not respond to increased heat stress by investing in
air conditioning.
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Heat-related labor productivity losses

Exposure to heat results in labor productivity losses, where workers are obliged to spend
more time to achieve the same output. The effect of heat stress on productivity comes through
two channels: the need to take breaks, rest, hydrate, or seek cooling in a less exposed
environment, and a natural self-limiting response of an overheated body reducing effort to
maintain function (see Dunne et al. 2013). In our analysis:

● Workability functions are defined for different work types – based on exposure to heat
and exhaustion – relating sWBGT to the effective reduction in labor.

● In paid/market sectors, time in different work types is calculated at the occupational and
sectoral level.

● In unpaid/non-market work, time spent in different forms of unpaid work are calculated
based on time use surveys and mapped to work types (exposure to heat and exhaustion).

Workability functions



Workability functions capture how labor productivity declines as workers are subjected to
greater human heat stress. There is a well-established literature and experimental body of
evidence relating productivity loss to the WBGT. The analysis for this report was based on
previous work for the Adrienne Arsht-Rockefeller Foundation Resilience Center at the Atlantic
Council and on work developed with the Woodwell Climate Research Center (WCRC) and
external advisors to adapt existing models to reflect the current understanding of human heat
stress and workability.

We use existing functions referenced in the literature that relate labor productivity loss to
sWBGT. The model applied in this analysis adapts the formula of Dunne et al (2013) to allow for
increased work at higher WBGT, following the guidance of expert advisors. Therefore, it provides
a more conservative estimate of productivity losses from heat stress. This adjustment is
conceptually consistent with Foster (2021).

Three sets of workability functions are defined for different types of work environments or
exposures to heat. The workability function gives the achievement of a unit of labor time at an
exposed temperature relative to peak efficiency, 0<𝜆≤1. Based on prior literature, we differentiate
the relationship between WBGT and productivity losses by four work ‘types’:

1. Outdoor: work done outdoors involving exposure to heat, in which estimated labor
productivity losses from heat are based on Dunne et al (2013).

2. Indoor, active: work done indoors involving active or active work, in which labor
productivity losses from heat are based on McKinsey Global Institute (MGI).

3. Indoor sedentary: work done indoors involving sedentary work, in which labor
productivity losses from heat are based on Pilcher et al (2002).

4. Air conditioned environment: in which no productivity losses are assumed.

Heat-related labor productivity losses are defined as the additional time needed to complete a
task due to heat exposure outdoors or indoors in a non-air conditioned environment (see
Figure 2). The extent of this additional required time is determined by the workability function
(where the labor productivity losses are calculated by 1−𝜆, the workability of a unit of labor time).
For example, the assumed workability modeling estimates a 20% loss in labor productivity for
outdoor work, 10% for indoor active work, and 5% loss for indoor sedentary work in a given
region. If 50% of female working hours in construction are outside, 10% are indoors and
environmentally controlled, 20% are indoors with no air conditioning doing active work, and 20%
are indoors with no air conditioning doing sedentary work, then the effective reduction in labor
supply for females is 13% (20%*50%+10%*20%+5%*20%= 13%), i.e., it would take an additional 13%
working hours to achieve the same output.

Workability functions are assumed to be the same for males and females. This is due to a lack
of detailed information on how workability may differ by gender. In our model, gendered
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differences in labor productivity losses due to heat are therefore attributable to: i) their time
allocation between the four types of work environments; and ii) their total time spent in work.
The next step of the analysis is to allocate time worked by males and females into each of
these four work-types and estimate the productivity losses based on sWBGT exposure.

Figure 2: Example of approach for estimating labor productivity losses from heat for outdoor
work, total losses are the sum of all labor productivity losses across all work types

Labor productivity losses in paid work

Heat-related labor productivity losses in paid work depend on the following factors: i) the
share of hours spent in different work conditions, ii) working hours categorized by sector,
occupation and gender, and iii) exposure to heat.
In the United States, the distribution of working hours spent across different working
conditions is calculated at the occupational level using survey data from O*NET. This is a
survey dataset, which reports occupation-specific information regarding the proportion of work
done outdoors, inside non-climate-controlled buildings, and inside climate-controlled buildings,
as well as the amount of time spent sitting and standing. Figure 3 illustrates how we allocate work
conditions as reported in O*NET to workability segments. Greater detail is provided in the Annex.

Figure 3: Workability is determined by exposure to heat and physical intensity of work and is
categorized using O*NET data on work conditions at the occupational level



Due to data limitations in India and Nigeria, US O*Net data scores are used as main input to
determine working environment exposure across all three countries. In this approach, we
assume that for a given occupation the proportion of time spent inside or outside, and the
proportion of time spent sedentary or active, is the same around the world. However, we adjust
the amount of time spent indoors in environmentally controlled conditions. For example, if:

● 90% of the working hours of US managers are spent indoors in environmentally
controlled conditions, while the remaining 10% are spent indoors without air conditioning,
doing sedentary work.

● National household air conditioning prevalence in the US is 88%, and in the Nigerian state
under analysis it is 8.8%, i.e., household air conditioning prevalence is 10% of what it is in
the US.

● Based on these findings, we would assume that managers in that state in Nigeria spend
9% of their working hours indoors in environmentally controlled conditions, and 91% of
their working hours indoors without air conditioning doing sedentary work.

Furthermore, the occupational composition of sectoral employment varies significantly by
country. For example, 42% of men and 25% of women employed in the agriculture sector in the
US work as managers, while in Nigeria only 9% for men and 3% for women work as manager, with
a much greater share (86% of men and 94% of women) working as skilled agricultural workers.

We estimate the distribution of working hours spent across different working types by sector
and gender, relying on the national-level occupational composition of sectors. For example,
suppose:



● Skilled laborers in India spend 100% of their work hours outside, while managerial
workers are estimated to spent 100% of their time inside – doing sedentary work without
access to air conditioning.

● Sector A is made up of 80% skilled laborers and 20% managerial workers.
● Then we would assume that 80% of working hours in sector A are spent outside

(80%*100%+20%*0%), and 20% of working hours in sector A are spent indoors doing
sedentary work without access to air conditioning (80%*0%+20%*100%).

● Outdoor workers experience heat-related losses in labor productivity of 50%, and indoor
sedentary workers experience heat-related losses in labor productivity of 10%.

● Sector A experiences total losses in labor productivity of 42% (80%*50%+20%*10%).

Labor productivity losses in unpaid work

A key extension of this work from previous literature is the incorporation of unpaid work in
estimates of labor productivity losses from heat. Unpaid work is generally measured as total

time spent on2:

● Household work: Time spent doing household activities, consumer purchases,
professional and personal care services, household services and travel related to
household activities.

● Primary care work: Time spent performing a given activity with or for the person for
whom they are caring, encompassing both children and older adults. This category
includes caring for and helping household members, caring for and helping
non-household members, travel relating to caring for and helping non-household
members, and telephone calls to/from paid child or adult care providers.

● Secondary child-care: Time spent with child under 13 years old “in his or her care”
while doing something else as a primary activity.

Time use data is utilized to classify male and female unpaid activities into time spent in the
four work ‘types’ (outdoor, indoor active, indoor sedentary, and air conditioned). This is done
through the following steps:

1. Map or assign a proportion of unpaid work activity to categories such as indoors
active, indoors sedentary and outdoors time (see Table 1). For example, unpaid care
work is assumed to consist of 100% indoors, active work.

2. Adjust the indoors portion of time based on the data for region-specific access to
domestic air conditioning. For example, if 15% of the relevant population has access to
domestic air conditioning then 15% of indoors active unpaid work time is calculated as
‘air conditioned.’ The new exposed indoors unpaid time shares are calculated using
the remaining fraction (85%). Of note, in the US, an adjustment is made to account for
lower air conditioning use among poorer households (see Box 1 below).



Table 1: Key labor productivity variables, sources and assumptions3

Country Unpaid work Assumptions around categorization to “work type”

ndia

Production of goods for own final use 50% outdoors; 50% indoors and active

Unpaid domestic services for household
members

00% indoors and active

Unpaid caregiving services for household
members

00% indoors and active

Nigeria
Collection of fuel or water 00% outdoors

Unpaid care and domestic work 00% indoors and active

USA

Caring for household members 00% indoors and active

Caring for non-household members 00% indoors and active

Domestic housework and related activities 90% time spent inside; 10% time spent outside

Box 1: Adjusting for air conditioning use in the United States

To account for income constraints on the use of air conditioning in the US, county level air
conditioning access is adjusted to account for differences in ability to pay for air conditioning.
While air conditioning use is high in the US, there is large divergence in the ability to pay due to
energy poverty and insecurity among poorer households (Cong et al., 2022). Data on air

conditioning use and consumption from the 2015 RECS4 by household income is used to derive

multipliers for poor and rich households based on the following calculation5

𝑀(𝑝𝑜𝑜𝑟), 𝑀(𝑛𝑜𝑡 𝑝𝑜𝑜𝑟)

[Equation]
[Equation]

Where consumption is defined as annual Btu of energy used of air conditioning and prop_ac_use
is the proportion of households who state they used air conditioning at least once in the previous

year. Multipliers for both poor and non-poor are defined in relation to the average (or total)
values. The following gender-specific multiplier is calculated for each county (C) and gender (g) to
account for shares of men and women in each household income category at the county level:

𝑀ˆ𝑐(𝑔)=𝑀(𝑝𝑜𝑜𝑟)∗𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔𝑒𝑛𝑑𝑒𝑟 𝑔 𝑝𝑜𝑜𝑟_𝑐+𝑀(𝑛𝑜𝑡 𝑝𝑜𝑜𝑟)∗𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔𝑒𝑛𝑑𝑒𝑟 𝑔 𝑟𝑖𝑐ℎ _𝑐

Air conditioned indoor unpaid work is calculated by further multiplying the estimated proportion
of unpaid work time inside with air conditioner access by this adjustment multiplier 𝑀𝑐ˆ(𝑔), and
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recalculating the proportion of time inside without air conditioning access as the remaining

proportion of time.6

Labor productivity losses in unpaid work is calculated by applying the workability analysis to
hours across the four work ‘types.’ This depends on regional climate projections of sWBGT and
time spent in exposed work types during unpaid work.

Heat-related output losses

We use a simple economic model to estimate the impact of worker heat stress on economic
production. Production within each sector follows a Cobb-Douglas production function with
constant returns to scale, where 𝑌 represents output, 𝐴 is total factor productivity, 𝐿 is labor input,
K is capital input, and β is the labor share in production. Exposure to extreme heat reduces the
productivity of labor, reducing the effective size of the labor force.

𝑌=𝐴𝐿𝛽𝐾1−𝛽

𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑙𝑎𝑏𝑜𝑟 (𝑀𝑃𝐿): 𝜕𝑌𝜕𝐿=𝛽𝑌𝐿

The marginal product of labor differs for males and females, based on the relative share of labor
input in each sector.
Labor share in production 𝛽 is approximated by the relative earnings for labor in each sector.
We assume 𝛽 is sector and country specific but does not vary across subnational regions or over
time. The sectoral share of labor in the production function is estimated from relative earnings in
the Global Trade Analysis Project (GTAP). Relative earnings to labor at the sectoral level is
calculated as:

𝛽≈ 𝑟𝑒𝑛𝑡 𝑝𝑎𝑖𝑑 𝑡𝑜 𝑙𝑎𝑏𝑜𝑟/(𝑟𝑒𝑛𝑡 𝑝𝑎𝑖𝑑 𝑡𝑜 𝑐𝑎𝑝𝑖𝑡𝑎𝑙+𝑟𝑒𝑛𝑡 𝑝𝑎𝑖𝑑 𝑡𝑜 𝑙𝑎𝑏𝑜𝑟)

Output losses from heat are the result of the effective reduction of labor input for men and
women due to heat. Effective reduction in labor supply is the result of reductions in labor inputs
from heat based on workability analysis outlined above.

Heat-related mortality

We estimate the number of excess heat wave deaths by gender, age group, poverty status, and
other relevant demographic characteristics across the three countries of focus: India, Nigeria and
the US. Figure 4 outlines the key steps in the analysis.



Figure 4: Approach to estimating excess heat wave deaths

1. We estimate the current and projected distribution of the population. This is
described in the section “Baseline and projected socioeconomic data”.

2. We estimate the crude daily non-heat wave deaths. As described above, we
estimate crude mortality rates at the country-level by gender, age, and socioeconomic
status. The daily mortality rate is assumed to be constant across the year (annual
mortality is divided by 365 days).

3. We determine the relative risk of mortality from heat waves based on the findings
in the existing literature. The relative risk of mortality from heat waves is calculated
by determining the ratio of deaths of people exposed to heat waves to the deaths of
people not exposed to heat waves, representing the additional likelihood of death for
a group that occurs as a result of heat wave exposure (Tenny & Hoffman, 2022).
Relative risk factors for heat wave mortality are calculated based on reported relative

risk factors from heat waves in Sera. et al. (2020) and Benmarnhia (2017).7 Note that

when estimating the relative risk of mortality from heat waves in India and Nigeria we
use the average relative risk factors for the 4 developed countries reported in Sera et
al. (2020). Despite the additional vulnerability of healthcare systems in these
countries, there is no compelling evidence in the literature to suggest we should

adjust the relative risk upwards for India and Nigeria.8 We assume people experience

different relative risk factors depending on whether or not they have air conditioning,
and the relative risk factors are also age- and gender- specific. However, we assume
that holding air conditioning constant, people in different socioeconomic groups
experience the same relative risk.
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4. Heat wave days are estimated at the local level based on climate modeling.
Following Guo et al, (2018), heat wave days are defined as 2 consecutive days with

daily mean temperature exceeding the 95th percentile of daily mean temperature

across all models and years in the baseline (1.1⁰C).9

5. Excess heat wave deaths are calculated, differentiated by age, gender, air
conditioning ownership, socioeconomic status, and geography. This is determined
by i) crude mortality rates, ii) relative risk of mortality from heat waves, iii) climate
modeling projections of heat wave days as defined above.

https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002629#:~:text=Citation%3A%20Guo%20Y%2C%20Gasparrini%20A%2C%20Li%20S%2C%20Sera,modelling%20study.%20PLoS%20Med%2015%20%287%29%3A%20e1002629.%20https%3A%2F%2Fdoi.org%2F10.1371%2Fjournal.pmed.1002629


Annex

Interpreting the O*NET data

O*NET is the data source used to determine the work types of different occupations. O*NET
OnLine is a resource developed by the US Department of Labor to catalog the working

conditions and skill requirements of detailed occupation.10 It reports how frequently work is done

outdoors, inside in non-climate-controlled buildings, and inside in climate-controlled buildings, as
well as the amount of time spent sitting and standing.

O*NET scores report frequency of exposure to different types of work conditions and is
converted into percentages of time exposed. The relevant O*NET variables are shown in table 5
and are used to estimate the share of total work time in each of the four work-types that

correspond to a workability function.11 O*NET scores are based on a qualitative frequency of how

often work takes place in each ‘condition’. Variables which indicate the frequency that work takes
place outdoors or indoors, exposed or air conditioned, or indoors and not exposed to air
conditioning are related to percentage exposure based on the following formula: a score of 1
corresponds to zero percent (“Never”), 2 corresponds to once every 2 months (“Once a year or
more but not every month”), 3 corresponds to once every second week (“Once a month or more
but not every week”), 4 corresponds to 3 day a week (“Once a week or more but not every day”),
5 corresponds to all the time – 100% (“everyday”). Figure 5 illustrates the function relating the
O*NET score from 1-5 to a percentage from 0-100 and Table 4a and 4b further outline the
assumptions made. Time in each category is adjusted to ensure all work type exposures sum to
100%.

Figure 5: Assumptions made on proportion of time spent in indoors and outdoors work
conditions example for ‘Indoor, Environmentally Controlled’



Table 2: Quantitative assumptions made on the amount of time spent in each category

Qualitative O*net response12 Quantitative assumption on time spent in work

Never” 0% (never)

Once a year or more but not every month” .64% (once every 2 months)

Once a month or more but not every week” 7.12% (once every second week)

Once a week or more but not every day” 42.74% (3 days a week)

Everyday” 00% (always)

Table 3: Quantitative assumptions made on the amount of time spent in each category for
time spent standing, time spent sitting

Qualitative O*net response 13 Quantitative assumption on time spent in work

Never” 0%

Less than half the time” 25%



About half the time” 50%

More than half the time” 75%

Continually or almost continually” 00%

We use O*NET data to derive relative share of time in paid work exposed to different work
conditions. Namely we construct paid work shares in the following work types:

𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒, 𝑠 𝑎𝑐, 𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑎𝑐𝑡𝑖𝑣𝑒, 𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑠𝑒𝑑𝑒𝑛𝑡𝑎𝑟𝑦

where the share of time inside is equal to the sum of share of time indoors in an air conditioned
environment (𝑠 𝑎𝑐), share of time indoors doing active work (𝑠 𝑖𝑛𝑑𝑜𝑜𝑟𝑠 𝑎𝑐𝑡𝑖𝑣𝑒) and share of time indoors
doing sedentary work (𝑠 𝑖𝑛𝑑𝑜𝑜𝑟𝑠 𝑠𝑒𝑑𝑒𝑛𝑡𝑎𝑟𝑦).

Table 4: Summary of assumptions and calculations for work types

Work types O*Net variables Calculations

Outdoors
Time spent Outdoors, Exposed to Weather (% total time)

Time spent Outdoors, Under Cover (% total time)

Sum two outdoor work
variables.

ndoors – doing active
work without AC access

Time spent indoors, not environmentally controlled (% total
ime)

Time spent sitting (% total time)

Assume that sitting/standing is
ndependent of working
environment. Multiply share of
ime spent sitting by share of
ime spent indoors, not
environmentally controlled.

ndoors – doing
sedentary work without
AC access

Time spent indoors, not environmentally controlled (% total
ime)

Time spent sitting (% total time)

Assume that sitting/standing is
ndependent of working
environment. Multiply share of
ime spent standing by share of
ime spent indoors, not
environmentally controlled.

ndoors with access to
AC

Time spent indoors, environmentally controlled (% total time)
N/A – except in Nigeria and
ndia which requires adjustment
by relative AC factor.
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